Get some information about this model from the DDMoRe model repository
Description of the mathematical model and Shiny application here
model.pharmml <- 'pharmML/DelBene_2009_oncology_in_vitro_v1.xml'
d = read.csv('data/delbene2009_data.csv',skip=1,na='.')
head(d)
## ID TIME DV CONC EVID
## 1 1 0 NA 0 2
## 2 1 4 2330.56 0 0
## 3 1 8 3164.31 0 0
## 4 1 12 2814.66 0 0
## 5 1 24 5468.12 0 0
## 6 1 48 8707.01 0 0
N=length(unique(d$ID))
conc <- d$CONC[!duplicated(d$ID)]
p1 <- c(k1=0.0743, k2=0.0745, lambda0=0.0292, N0=2147.3, CV=0.1)
p2 <- list( name = 'CONC',
colNames = c('id', 'CONC'),
value = cbind(1:N, conc));
out <- list( name = c('Nt','y'), time = unique(d$TIME[d$EVID!=1]))
res <- simulx( model = model.pharmml,
parameter = list(p1,p2),
output = out,
settings = list(seed=12345));
print(ggplot() + geom_line(data=res$Nt, aes(x=time, y=Nt, colour=id)) +
geom_point(data=res$y, aes(x=time, y=y,colour=id)))
Del Bene F, Germani M, De Nicolao G, Magni P, Re CE, Ballinari D, Rocchetti M A model-based approach to the in vitro evaluation of anticancer activity, Cancer chemotherapy and pharmacology, 4/2009, Volume 63, Issue 5, pages: 827-836
Get some information about this model from the DDMoRe model repository
Description of the mathematical model and Shiny application here
model.pharmml <- "pharmML/Simeoni_2004_oncology_TGI_v2.xml"
d = read.csv('data/simeoni2004_data.csv',skip=1,na='.')
head(d)
## ID TIME DV AMT EVID CMT
## 1 1 0 NA NA 2 3
## 2 1 8 0.47809 NA 0 3
## 3 1 10 0.95340 NA 0 3
## 4 1 13 2.14540 NA 0 3
## 5 1 15 3.41620 NA 0 3
## 6 1 18 4.35640 NA 0 3
p <- c(V1=0.81, k1=0.968, k2=0.629,
k10=0.868*24, k12=0.006*24, k2=0.629, k21=0.0838*24,
lambda0=0.273, lambda1=0.814, psi=20, CV=0.1, w0=0.055)
adm2 <- list( time = d$TIME[d$EVID==1],
amount = d$AMT[d$EVID==1],
target = 'Q1')
f1 <- list( name='Wtot', time=seq(0,30,by=0.5))
f2 <- list( name='Wtot', time=seq(0,45,by=0.5))
y1 <- list( name = 'y', time = d$TIME[d$EVID!=1&d$ID==1])
y2 <- list( name = 'y', time = d$TIME[d$EVID!=1&d$ID==2])
g1 <- list( output = list(y1, f1))
g2 <- list( treatment = adm2, output = list(y2, f2))
res <- simulx( model = model.pharmml,
parameter = p,
group = list(g1,g2),
settings = list(seed=12345) )
print(ggplot() + geom_line(data=res$Wtot, aes(x=time, y=Wtot, colour=id)) +
geom_point(data=res$y, aes(x=time, y=y,colour=id)))
Get some information about this model from the DDMoRe model repository
Description of the mathematical model and Shiny application here
model.pharmml <- 'pharmML/Rocchetti_2013_oncology_TGI_antiangiogenic_combo_v1.xml'
d = read.csv('data/rocchetti2013_data.csv',skip=1,na='.')
head(d)
## ID TIME DV AMT CMT EVID
## 1 1 0 NA NA 1 2
## 2 1 7 0.2594 NA 1 0
## 3 1 8 NA 0.1342282 1 1
## 4 1 9 NA 86.0420650 3 1
## 5 1 9 0.2111 NA 1 0
## 6 1 10 NA 86.0420650 3 1
adm1 <- list( time = d$TIME[d$EVID==1&d$CMT==1],
amount = d$AMT[d$EVID==1&d$CMT==1],
target = 'Q0_A')
adm2 <- list( time = d$TIME[d$EVID==1&d$CMT==3],
amount = d$AMT[d$EVID==1&d$CMT==3],
target = 'Q1_B')
p <- c(Emax=1, FV1_A=1/0.119, FV1_B=1/2.13, IC50=3.6, IC50combo=2.02,
k1=3.54, k12=141.1, k2=0.221, k21=10.4,
ka_A=24*log(2)/6.19, ka_B=18.8, ke_A=log(2)/6.05, ke_B=49.2,
lambda0=0.14, lambda1=0.129, psi=20, CV=0.1, w0=0.062)
out <- list( name = c('Wtot','y'), time = d$TIME[d$EVID!=1])
res <- simulx( model = model.pharmml,
parameter = p,
treatment = list(adm1, adm2),
output = out,
settings = list(seed=12345))
print(ggplot() + geom_line(data=res$Wtot, aes(x=time, y=Wtot), colour="black") +
geom_point(data=res$y, aes(x=time, y=y), colour="red"))